PROOF OF THE BIEBERBACH CONJECTURE
FOR A CERTAIN CLASS OF UNIVALENT FUNCTIONS

BY
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ABSTRACT
In the following we prove that for a given univalent function such that ]azl
< 0.867, I anl < nfor each #. The method of proof is closely related to

Milin's method.

Let S be the class of univalent functions in Izl < 1 with the normalization

(1) f@O=z+ T ad
k=2
We denote
o) 10g7@ =2 325 f)es.
z k=1

Milin [1] proved that
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For p = 21"*1 Milin derived
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where 6 < 0.312.
Our aim js now to estimate EZ=2leklz instead of Xj., klyklz. In exactly

the same method as in [1], we derive
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For p = 21" 1 we have:
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We can now formulate our result:

THEOREM. Let f(z)eS and |a,| <0.867. Then |a,| < n for each n.

2 2
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ProoF. We have 5 +4 3 < (—2——‘ + 0.312 5 < 0.
So we have from (7)
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For the coefficients {b,} of the function \/ffz—zﬁve have
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From (8) and (9), it follows that the coefficients {b,} are bounded by 1 for our
class.

Our theorem follows readily by Robertson’s procedure.

REMARK. As it is well known | b,

can not yield the global result.

<1 is not true in general, so the method
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